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Transient Response of Joint Dominated Space Structures: 

A New Linearization Technique 

by 

G. A. Foelsche, J. H. Griffin, J. Bielak 

Abstract 

A new and efficient linearization method is presented for use in 

calculating the transient response of non-linear systems. The method is 

an extension of the describing function approach in which the steady state 

response of the system is calculated by representing the nonlinear 

element, typically joints in the the case of space structures, by 

impedances which are functions of the amplitude of response. As a 

result, the problem of solving the differential equation for the steady 

state response becomes one of solving a set of nonlinear algebraic 

equations involving the steady state amplitudes and phases of the system. 

For the transient case the steady state impedances can be averaged over 

the range of response in order to provide equivalent values of stiffness 

and damping that, for a given set of initial displacements, may be treated 

as being constant for purposes of calculating system response. 

Single-degree-of-freedom systems are used first to demonstrate the 

method and then to develop an approach for optimizing the joint's 

characteristics so as to minimize transient response times. The use of 

this method for response estimation and optimization in multiple- 

degree-of-freedom systems is investigated subsequently. 
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An important problem in the design of space structures is how to 

predict their dynamic response. This process is particularly difficult 

when dealing with structures that contain a large number of joints that 

exhibit nonlinear, hysteretic behavior. For example, this may be the case 

for prefabricated truss structures that are designed to collapse into a 

dense package for transportation to orbit. The truss is then expanded in 

space by utilizing joints that are specially designed to rotate and lock into 

place. The dynamic response of such structures is said to be joint 

dominated if the amount of damping or the stiffness of the system is 

strongly affected by the joints' behavior. If damping in the system is 

primarily due to joint hysteresis then joint behavior controls the 

amplitude of the steady state response as well as the rate at which 

transients decay. Additionally, in some cases, joint flexibility can 

significantly reduce the stiffness of the structure, thus reducing its 

natural frequencies and altering the associated mode shapes. This paper 

discusses a new approach that may be used to efficiently estimate the 

transient response of such systems. 

The transient response of nonlinear systems is usually calculated by 

time integration methods that employ finite differences in time. This 

approach has two disadvantages when it is applied to the design of joint 

dominated structures. The first is that it is computationally intensive. 

This would be especially the case for the type of complex three 

dimensional truss structures that are proposed for space applications 

since they have a large number degrees of freedom. Secondly, the problem 

is nonlinear and, consequently, the solutions lack generality. For example, 

the rate of decay of a transient would depend on the specific magnitude 

and distribution of the assumed initial displacements and velocities. - 
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Since the number of degrees of freedom is large, it is not reasonable to 

consider all possible initial conditions. So one difficulty that faces the 

design engineer is trying to select those conditions that are of critical 

importance to the design and to simulate the corresponding system 

response. Neither the selection nor the simulation process is particularly 

feasible if time integration is the only procedure available for calculating 

the response of the system. 

L 

-7 In this paper an approximate method is developed for estimating the 

transient response of nonlinear systems in terms of linearized modes of 

response. Its advantages are that it is computationally more efficient 

than the time integration method and that it is possible to view the design 

problem in the more traditional physical terms of modal response. For 
example, if it is most important to damp the larger amplitude, low 

frequency response one can easily focus on that issue by isolating the 

response of the first few linearized modes. Consequently, by utilizing this 

approach the design problem should become more tractable. The major 

drawback of the approximate method is loss of accuracy. It is our view 

that both approximate methods and time integration have their roles in 

design. Approximate methods provide efficient tools for performing 

parametric studies and they supply physical insights into how to optimize 

system performance that are not easily inferred from strictly numerical 

methods. Time integration provides a method for assessing the accuracy 

of the approximate solution for key simulations and for fine tuning the 

final design. 

--;. I n  the procedure presented here the nonlinear system is 

approximated by an equivalent linear system in which the system 

parameters are constant over the range of transient response. The method 

is an extension of the describing function approach used to calculate the 

steady state harmonic response of nonlinear systems. In the describing 
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function approach the response is assumed to be essentially harmonic and 

the nonlinear element is represented by impedances which depend on the 

amplitude of response. As a result, the problem of solving the differential 

equation for the steady state response becomes one of solving a set of 

nonlinear algebraic equations for the steady state amplitudes and phases 

associated with the various degrees of freedom of the system. In the 

transient case considered here the steady state impedances are averaged 

over the range of response in order to provide equivalent values of 

stiffness and damping that, for a given set of initial conditions, may be 

treated as constants for purposes of calculating system response. We 

refer to this approach as the Amplitude Averaging (AA) Method. Once 

equivalent parameters are identified for the system, conventional methods 

can be employed for analyzing the resulting linear system. 

L 

The AA Method is derived from an efficient time integration 

procedure presented by Sinha and Griffin [2] in which single time steps 

were used to step from one peak of the oscillation to the next. Their 

approach in turn, was based on an idea originally developed by Caughey [l] 

that the response may be approximated as a sinusoid in which the 

amplitude and phase vary slowly with time. 

In the first part of this paper the AA Method is illustrated by 

applying it to a single-degree-of-freedom (SDF) system exhibiting the 

bilinear hysteretic behavior typically associated with Coulomb friction. 

While the method is not restricted to this type of nonlinearity this 

behavior was selected for analysis because it is representative of the type 

of nonlinearity that occurs in actual joints. A half cycle method similar 

to that used by Sinha and Griffin is presented in order to illustrate the 

linearization process and in order to develop "instantaneous" values of the 

nonlinear element's stiffness and damping. The instantaneous values of 

the element's parameters, which effectively characterize the joint's 
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given amplitude of response, are then averaged over a range 

in order to calculate the constant stiffness and damping 

the AA Method. Since an equivalent, constant damping has 

been determined for the system it may be used to select joint 

characteristics (the friction slip load in this example) so as to maximize 

average joint damping and minimize transient response times. In the 

second part of the paper a general approach that may be used for 

multiple-degree-of-freedom (MDF) systems is given and applied to the two 

body problem. tn each case, the accuracy of the approach is assessed by 

comparing results from the approximate method with those obtained using 

standard time integration methods. 

b 
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In order to demonstrate the AA Method, we develop a solution for the 

SDF system depicted in Fig 1. This is essentially the same system whose 

steady state behavior was investigated by Griffin et. a/. in [2], [3], and [4]. 

The equation of motion for the system is 

n m i  + c ;  + k x  = - f  

where f, is the nonlinear force from the friction element and superscript 

dots represent differentiation with respect to time. During oscillation, 

the friction joint remains locked until the magnitude of the spring force 

Ik,(x-y)l , equals the friction force p N  . The joint then slips with a 

constant resistive force of magnitude pN until the mass reaches an 

extremum of oscillation, at which point the joint locks up again. The 

relative displacement (x-y) required to cause slip is designated as xcrit , 

where 

X -  uN 
kd 

crit 

The Half-Cvcle Method 

If the transient response is approximately a sinusiod that has an 

amplitude and phase which vary slowly with time, then over a limited time 

span it may be approximated as x = B cos 8 , where 0 =cot - 41 . We 

assume that the nonlinear force f, exhibits the same periodicity. 

Expressing f, in a Fourier series, we obtain (see Menq and Griffin, (31) 

f, = F,(B) COS 8 + F,(B) sin 8 +... (higher harmonics) (3) 



7 

where 

kd Fc (B) = - [ 8*(B) - l s i n  2 28' (B)]  
x: 

(4) 

In the case of Coulomb friction, F, and Fs may be calculated 

analytically as indicated. In the case of experimental joint data, the 

Fourier coefficients can be calculated numerically from hysteresis curves. 

If we keep only the fundamental harmonics and truncate the 

expression (3) after the first terms, we can express fn as 

Thus (1) becomes, 
r n i + ( c - A ) i + ( k + $ ) x = O  F F 

6lB 

m y  + cef,(B) + k elf (B) x = 0 (9) 

where teff and keff are defined in a manner consistent with (8) and are 

referred to as the instantaneous damping and stiffness of the bilinear 

spring. In a more familiar form we may write (9) as 

where and on are both functions of B 
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The damped natural frequency of this system may be similarly defined as 

It is observed that during transient oscillation of the nonlinear 

system , the response is similar to the decaying sinusiod seen in linear 

analysis. It is reasonable to assume that the motion of the nonlinear 

system from one extremum of oscillation to the next extremum is 

representable as the decay of a linear system over a half-cycle. As an 

example, we consider a system decaying from initial conditions of some 

initial displacement Bo and zero initial velocity. Let Bi denote the 

amplitude of the ith extremum (occuring at time ti ) and Bi+, denote the 

amplitude of the next extremum (at time ti+,) . Then from linear theory, 

the time elapsed between one extremum and the next is approximately 

(14) 
x At = ti+, - ti = - 

yJ(Bi) 

and the relationship between successive peaks is 

B. = - B. e 
1+1 I 

Given the initial amplitude Bo , we can efficiently estimate successive 

extrema and the time increments at which they occur from (14) and (15). 

Since the extrema occur each half cycle, we refer to this method as the 

Half-Cycle Method. 

This Half-Cycle Method is an efficient way of approximating a 
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numerical time integration to find extrema of transient oscillation. Tests 

on SDF systems show that this method is accurate for nonlinear systems 

in which E = kd / (k + kd) < 0.5 and provides a reasonable approximation 

for the amplitude of response for E > 0.5 . The Half-Cycle Method results 

were compared to more accurate solutions generated by 4th order 

Runge-Kutta time integration. The comparison of the half cycle estimates 

to the more exact numerically generated solutions is shown in Figures 

2a-d, where the Half-Cycle estimates of the extrema of response are 

shown as points (the exponential decay envelopes pictured are a result of 

the new Amplitude Averaging Method and will be discussed later). For 

nonlinearities E > 0.5 , the system experiences a biasing which is not 

accounted for in the Half-Cycle Method . However, the peak-to-peak 

amplitude estimates are seen to be reasonable despite this offset. Note 

that e > 0.5 corresponds to severe nonlinearities that are probably much 

stronger than those that could occur in space stuctures. It may be 

observed that this approach usually yields conservative estimates of 

system behavior in that it overestimates the amplitudes of response. 

Amplitude Ave raaina Met hod 

We now introduce a new linearization called the Amplitude Averaging 

(AA) Method. In this approach, the half-cycle values of damping and 

stiffness are averaged over the entire response range of interest. 

Consequently, while these average values are nonlinear functions of the 

initial displacement, they are constants as far as the transient response 

analysis is concerned. 

The AA Method is also based on equations (3) through (6). Linear, 

constant parameters are derived by averaging 

the nonlinear range of oscillation, Le. 

teff and keff from (9) over 



- 
(1 6) 

'wit cetC(BO) = C +  C(B ) = c + 
crit 

e o  B - x  
0 

J Fc:' dB 
- 

(1 7) 
'c rit k (B )  = k + F ( B )  = k +  

elf 0 e o  B -  x 
o crit 

where o in (16) is given by (12). After averaging, (8) becomes 

m i  + ( c +  F ( B ) ) i  e o  + ( k +  r ( B ) ) x  e o  - 0 (1 8) 

For the example of Coulomb friction, the analysis can be simplified by 

expressing the averaged properties in terms of several nondimensional 

parameters: (nondimensionality indicated by a superscript) 

k ( B )  = k k ( B )  e o  d e o  

where 

c = 2 m o  0 - 2 , / m k d  
0 

and 

- - 
k,*( Bo*) and ce*( Bo*) are the nondimensional averaged stiffness and 

damping of the friction element. These quantities are of particular - 



11 

interest because their values may be calculated in terms of the single 

nondimensional parameter, Bo* , the initial displacement. - 
For Coulomb friction from (4), (17), and (19), k, is given by 

where 
8 

COS 8(B ) = 1 - - 2 
B 

9 ( B ' W  

- 
and need be calculated only once. The nondimensional frequency o is 

then easily estimated from (12), (17), and (19) as 

Lastly, from (5), (16), and (20), the average nondimensional damping is 

approximated as 

which yields upon integration - 
1 { + In ( B8 ) - 1 } (27) 2 e .  

ce(Bo) - 8 0 

0 
(Bo - 1  1 B 

Note that the parameters are averaged only over the range in which they 

exhibit nonlinear behavior. The system is linear for amplitudes less than 

and the response can be calculated using standard methods in that 'wit 

regime. 

The AA Method gives a linear estimate of the nonlinear behavior of 

the system. Results from the AA linearized systems are shown in Figures 
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2a-d as exponential decay envelopes, and are plotted with the Half Cycle 

Method and Runge Kutta results for comparison. As with the Half-Cycle 

Method, we again see conservative estimates of actual system behavior, 

and again the estimates are more precise for weakly nonlinear systems. 

An important result of the AA Method is shown in Figure 3. This 

figure shows the nondimensional quantities ke'( Bo'), ce'( Bo'), ke'( Bo*), 

and ce'(Bo') in terms of the nondimensional initial displacement Bo' . 

- 
- 

It is observed that there are optimal system configurations which 

maximize either instantaneous or average damping in the system. These 

optimality conditions depend only on the nondimensional initial 

displacement Boo . Recall from (23) that Bo' is dependent on the system 

parameters. Thus, by adjusting just one of these parameters, say, normal 

load for example, it is possible to optimally damp an existing system. For 

example, the points A, B, and C on the average damping curve can be 

thought of as three systems which are identical except for the tightness 

of the friction joint as indicated by the normal load (normal load = N , 

N,> N,> N, ). Comparing the linear average damping terms provided by 

the AA Method for the three systems, it is seen that system B, with 

normal load N,, has the highest value of average damping and is an 

optimally damped system for this set of basic parameters. The optimality 

of system B in an average sense was confirmed by 4th order Runge-Kutta 

simulations. The results for the three systems A, B, and C are shown in 

Figure 4, where successive extrema have been connected to form an 

envelope of decay. The normal load N, is not simply the largest or 

smallest normal load which could be applied, nor is it the same load which 

would be required to optimally damp only the first oscillatory swing in the 

transient motion (this normal load would be present in system D and 

would be chosen to maximize the position on the instantaneous damping 
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curve) . 
Runge-Kutta simulations confirm the optimality results which were 

readily provided by the AA Method. We observe, however, that the 

optimality result would not have been nearly so obvious if an exact time 

integration had been used alone to investigate this transient behavior. It 

is also noted that the AA Method provides general results in that it allows 

for parameter-based comparisons of different systems. Numerical time 

integration methods lack this generality, yielding instead results which 

are case-specific and thus more difficult to interpret when comparing 

systems. 

The AA Method leads to systems which are optimized, in an averaged 

sense, over the entire range of nonlinear behavior. The Half-Cycle Method 

may be used to generate systems which are optimal in a "first swing" 

sense. It is also possible to optimize the system over other select ranges 

of nonlinear behavior. This is done by averaging the ceff and k,, equations 

over the particular range of concern, resulting in a new curve for cB'(B,'). 

The optimal normal load (or other parameter) is the one which adjusts the 

nondimensional initial condition so as to maximize the value of this new 

- 

- 
ca*(Bo'). The linearizations described so far make it possible to optimize 

the nonlinear system, in an average sense, over any range of nonlinear 

behavior. 

The Amplitude Averaging Method has yielded a. general result which 

was not obvious from numerical time integrations. In the next section, the 

application of the AA Method to multiple mass systems is developed and it 

is shown that the principles of generality-of-results and optimal damping 

still apply, only that they now apply in a modal sense. 
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The t ran si en t an a I y s i s of m u I t i p I e - d e g re e - of - f r e e d o m ( M D F) n o n I i ne a r 

systems using the AA Method can be accomplished by representing the 

system in modal form in terms of a sum of SDF nonlinear systems. The 

SDF components are linearized separately and are then combined to form a 

linear representation of the MDF system. 

In the linearization process, a nonlinear friction damper will be 

replaced by linear elements which approximate its behavior, as depicted in 

Figure 5. This 2DF system incorporates a friction damper as a nonlinear 

element and will serve to illustrate the application of the Amplitude 

Averaging Method to MDF nonlinear systems. The equations of motion for 

the system may be written in matrix form as 

fn [.:I M i + C ; + K x =  - 

where 
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. .  MREJ ineatl7ab.n 

In the SDF analysis we were able to regard the initial amplitude 

across the friction damper as the maximum spanning which the joint 

would experience during transient oscillation. In the MDF system, the 

initial amplitude across the joint is no longer guaranteed to be the 

maximum span which the joint experiences. Consequently, the nonlinear 

system cannot be linearized by simply considering the isolated friction 

damper and the span across it. This motivates the use of a modal approach 

in the linearization process. 

It is necessary to decouple the nonlinear MDF system of Fig 5 into 

two SDF nonlinear systems so that the AA Method may be applied to each 

of the decoupled systems separately. Decoupling of linear systems is done 

routinely [5],[6] while nonlinear systems are not generally amenable to 

such analysis. The nonlinear decoupling and modal linearizations may be 

accomplished with the iterative approach detailed in Appendix I. A set of 

converged eigenvalues and eigenvectors is obtained and used to form a 

modal (decoupled) representation of the nonlinear system. The decoupled 

systems are linearized using the AA Method and are transformed back to 

the original coordinates to yield a linear MDF system. 

Several approximations are made during the decoupling process. 

Viscous damping is generally small and is, therefore, neglected in order to 

avoid the inconvenience of dealing with complex eigenvectors. The 

complex formulation could be pursued in order to increase the overall 

accuracy of the linearization and estimation scheme. Another assumption 

made in the analysis is that each modal friction joint operates with the 

full normal load and coefficient of friction of the physical system. That 

is, the product pN is unnaffected by the transformation to and from 

modal coordinates, and may be applied in each mode independently. This 
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latter assumption is believed to be responsible for the fact that the modal 

AA response estimates are no longer conservative in some instances. 

However, in general the results obtained from the AA Method compare 

well with results from direct time integration. The modal comparisons 

for two cases are shown in Figures 6 and 7. where the time integration 

solutions have been transformed from the original x coordinates into the 

converged modal coordinates, q l  and q 2  , by using the converged 

eigenvectors. Overall, the exact modal solution is seen to be similar in 

form to a decaying sinusiod centered about a zero equilibrium state. The 

neatness (symmetry and sinusiodal appearance) of the exact modal 

solution indicates that the converged linear decoupling does in fact 

represent the nonlinear behavior fairly well, as the response in x 

coordinates would transform poorly if the modal representation was not a 

reasonable estimate of system response. 

In particular, several characteristics of the AA Method as applied to 

MDF systems are illustrated in Figures 6, 7, and 8. Firstly, the AA 

estimates in Figures 6 and 7 are no longer conservative. Secondly, while 

the symmetric sinusiodal form is still obvious in all cases, it is noted 

that the larger the viscous damping and nonlinearities in a mode, the less 

"neat" the modal response looks. Thirdly, a MDF system can be modally 

optimized in a fashion similar to that used to optimize the SDF system. 

As in the SDF case, the correct manipulation of the normal load shifts the 

nondimensional modal initial condition to a condition which generates the 

optimal (modal) damping. It is noted that it is not generally possible to 

optimally damp both modes simultaneously, as the optimization of one 

mode results in a detrimental or non-optimizing shift of the other mode. 

Figure 6 shows a system which is not optimally damped in either mode. 

Figure 7 shows the same system after the normal load has been adjusted 

to optimally damp the higher frequency mode (mode 2). The results are 
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plotted on different scales in Figures 6 and 7 and so it is not immediately 

obvious that the optimization was successful. However, in Fig 8b , the 

extrema in the numerical time integration solutions for the 

non-optimized-mode 2 and optimized-mode 2 systems have been scaled 

for direct comparison (extrema plotted to form decay envelope). From Fig 

8b it is obvious that the optimization has a significant effect on modal 

response. The same system was optimized in mode 1 in Fig 8a , but in 

this particular system the friction damping in the first mode was quite 

small compared to viscous effects, so an expanded scale was used to show 

the optimization result more clearly. The AA optimization results for 

both modes 1 and 2 were confirmed by Runge-Kutta simulation. Thus, 

although the modal AA extrema may be nonconservative in some cases, the 

AA indication of modal optimality remains accurate. 

The AA Method may thus be used to optimally damp select modes of 

particular concern. This is helpful in the design process in that it gives an 

easy indication of which systems are optimal in which situations. This 

knowledge may in turn be used to determine which special physical tests 

should be run in order to confirm and further refine system models. Again, 

it may not be possible to control the physical parameters needed to 

accomplish this modeled optimality, in which case the issue may become 

one of selecting the most nearly optimal configuration from a variety of 

available designs. 
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This paper has discussed the specific application of the Amplitude 

Averaging Method to friction damped systems. However, the AA Method is 

a more general linearization method applicable not only to friction damped 

systems but also to other systems which exhibit nonlinear hysteretic 

behavior. 

The AA Method is efficient and can be used to easily establish 

optimization conditions, subject to time integration verification. 

Familiar modal analysis may be applied to MDF nonlinear systems and 

systems may be optimized over specific ranges of nonlinear oscillation. 

Furthermore, the AA Method can be used to modally optimize MDF systems 

in order to suppress system response over specific frequency ranges. 

The AA Method may also be used as a comparison tool in the system 

design process. The physical parameters of the system may not be 

adjustable to the indicated optimal values. For example, in the case of 

jointed structures and friction damping, it is not generally possible to 

select physical joints with adjustable (optimizable) normal loads. In this 

situation the task may be one of selecting joints from a variety of designs. 

The AA Method yields the relative averaged damping in these designs for 

amplitudes of response which are representative of those encountered in 

practice and thus may be employed as a method of comparison in order to 

help choose the most nearly optimal design. 

The AA Method is an efficient design tool for two reasons. The first 

reason is that the method is computationally efficient. In the cases 

considered in this paper, AA solutions could be calculated an order of 

magnitude more quickly than numerical time integration solutions. In 

addition, the method is efficient because it provides a sytem 

representation in terms of linearized modes and, consequently, it becomes 
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relatively easy to establish optimum system response. Again, it is our 

view that numerical time integration and the AA Method are 

complimentary approaches and that both have their places in the design 

and analysis of nonlinear systems. The AA Method is a computationally 

un-intensive approach which supplies analytical insight at the expense of 

accuracy, while the time integration approach provides verification and 

fine tuning of the results for select cases of interest. 

. 



/ 20 

Bi bt iog rap h y : 

1 Caughey, T. K., "Sinusiodal Excitation of a System With Bilinear Hysteresis,' 
ASME Journal of Applied Mechanics, Vol. 27,1960, pp. 640-643 

2 Sinha, A., and Griffin, J. H.,"Effects of Static Friction on the Forced Response of 
Frictionally Damped Turbine Blades," ASME Journal of Engineering for Gas Turbines 
and Power, Vol. 106, Jan. 1984, pp. 65-69 

3 Menq, C.-H., and Griffin, J., H., "A Comparison of Transient and Steady State Finite 
Element Analyses of the Forced Response of a Frictionally Damped Beam," ASME 
Journal of Vibration, Acoustics, Stress, and Reliabiiiv in Design, Vol. 107, 
Jan. 1985, pp. 204-21 0 

4 Griffin, J. H., "Friction Damping of Resonant Stresses in Gas Turbine Airfoils," 
ASME Journal of Engineering for Power, Vol. 102, Apr. 1980, pp. 329-333 

5 Thomson, William T., Theory of Vi6rations With Applications, Second Ed., Prentice-Hall, 
New Jersey, 1981 , pp 132-201 

6 Craig, Roy R. Jr., Structural Dynamics: An lntroducyion to Computer Methods, 
Wiley and Sons, New York, 1981 , pp 273-375 

7 Den Hartog, J. P., 'Forced Vibrations With Combined Coulomb and Viscous Friction,' 
Transactions of ASME, 1931, pp. 107-1 15 

8 Menq, C.-H., Griffin, J., H., and Bielak, J., "The Influence of Microslip on Vibratory 
Response; Part 1 : A New Theoretical Model", Journal of Sound and Vibration, 
VOl.107, pp. 279-293 

9 Menq, C.-H., Griffin, J., H., and Bielak, J., "The Influence of Microslip on Vibratory 
Response; Part 2: A Comparison to Theoretical Results", Journal of Sound and 
vibration, Vol. 107, pp. 295-305 



A. ITERATIVE METHOD FOR DECOUPLING AND 
LINEARIZING A NONLINEAR MDF SYSTEM 

~ 

This method neglects damping in determining the eigenvectors of  the system. This 

is a reasonable approximation for slightly damped systems. There are seven steps in 

the process. of  freedom 
(2DF) system of Figure 5 

They are illustrated by applying them to  the two degree 

1. Write the governing equation of  the system in matrix form, neglecting 
viscous damping, e.g., for the 2DF system of Figure 5 

Mox + Kox = fn [-:I (A. 1) 

2. Find the eigenvalues and eigenvectors of  the linear part of  the system, 
Form the matrix of  momentarily disregarding the nonlinear term fn. 

eigenvectors, 'P, e.g., 

K0+i - X,MO+i eigenvalues X l , X 2  

eigenvectors jl =[:111 j2 = , [ I 1 2  
21 +22 

0 * t+,,j21 ... matrix of eigenvectors. 

3. Assume x can be represented in terms of  modal coordinates 1 

x - 0  
1 

then 

The modal initial conditions can be found using (A.3) and the orthogonality 
of the eigenvectors (with respect to M) 

1, = 'P-'xo 

4. Form a decoupled set of equations by  substituting x = +q. Step 3 into 
the governing equatiun from Step 1 

M 91 + Ko+q fn 
0 
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5. Find linearized stiffnesses for each independent mode using the AA 
method. This step yields 

(Analogous to: 

as done in the SDF case in equations (7,8,16,17,18) in the main body of  
the paper.) K is a diagonal matrix, each diagonal element is the . 
linearized stiffn8ss o f  the friction element in its respective mode, e.g., in 
the example 2DF system, slip occurs when 

pN = kd[l - l f x  

substitute equation from Step 3 

where q = [q1,q2IT. Thus 

kd2 = kd(+ 12 - +22) 

pN 'd1q1 + 0 
d2 

Assume that slip occurs independently in each mode. Then the modal slip 
conditions are given by 
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PN 
(analogous to  xcrit = -1 PN 

'li = -  
crit k di kd 

The modal initial conditions were found in Step 3. Given the initial 
conditions and the slip conditions, the AA method may be applied to  each 
mode separately in order to linearize the decoupled systems. From the 
first mode, the linearized stiffness term is  -ke . Mode 2 yields -k. . 

1 2 

The linearized modal stiffnesses have been found (Cq is found 
si mu I taneous l y). 

6. Convert back t o  original coordinates: 

Substituting into the linearized governing equation from Step 5: 
- 1  

M ~ X  + K ~ X  = - +T K ~ + - ~ x  (neglect CJ 

def ine 

then 

7. Let M, = Mo, K, = KO + Kma then 

Mlx + Klx = 0 

But this system has different eigenvalues and eigenvectors than the 
original system considered in Step 2. The linearization of Step 5 was 
heavily dependent on the eigenvectors of the system, which have changed 
slightly after linearization. To obtain a more accurate linearization, repeat 
Steps 1-7 using the eigenvectors from the Ml,K, system. 

The process (Steps 1-71 may be repeated as many times as needed to obtain a 

converged set of eigenvectors using M(il,K(il. In practice, this method usually 

converged in 4 iterations and never required more than six iterations to converge. 

While the linearized damping is retained and refined in each iteration, it is neglected 

along with any original viscous damping in the system in order to  simplify the 
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eigenvector and convergence calculations, Consequently, the method is less accurate 

when high viscous damping or large nonlinearities are present in the system. A 

.complex eigenvalue and eigenvector formulation could be pursued to increase 

accuracy. 
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Figure Captions 

Figure 1 
a. A single degree of freedom system with Coulomb damper as a 

b. The hysteresis curve for the nonlinear element alone. 
nonlinear element. 

Figure 2 

x=3.0, yz2.0 and v=dx/dt=O.O. The sinusiodal lines are numerical time 
integration solutions. The dots are Half-Cycle Method estimates of the 
response. The exponential decay envelopes were generated by the AA 
Method. Parameters for each system are given below. 

These graphs show system decay from initial displacement conditions 

8. m= 1 , C=0.02, k=0.9, kd=o. 1 , flN=O. 1 
b. m= 1 , c=0.02, kz0.75, kd=0.25, pNzO.25 

d. m= 1 , ~~0.02, k=0.25, kd=0.75, pNz0.75 
c. m=l, c=0-02, k=0.5, kd=o.5, flN=0.5 

Instantaneous dmping ( c*) and stiffness ( k*) and average damping 

( c* md awage  stiffness ( k* 1. Note maximum of E at B*E 3.1 6 
- e -  e - 
e e e 0 

Figure 4 
Comparison of systems A, 8, and C from Figure 3. Noma1 loads 

(given by N) satisfy N, > % > +. System 6 i s  optimal. 

Figure 5: 
The linearization used for MDF nonlinear systems. 

Figure 6 

Ini t ia l  conitlons: x 1 = 10.0, x2=2.5, v 1 =dx 1 /dt=O.O=v2, (y=94, for  no 
immediate slip) 

System Parameters: k, =%=m= 1 .O, %=2.0, c, =c2=0.0 1 , kd=0.25, pN=O. 1 , 

a. Mode *l response curve 
b. Mode *2 response curve 

Neither mode i s  optimal. 



FIgum Captions 

Figure *7: 

pN=0.35, Ini tiel coni tions: x 1 = 10.0, ~ 2 ~ 2 . 5 ,  v 1 =dx 1 /dt=0.0=~2, ( ~ ~ 6 . 6 ,  for 
no immediate slip) 

System Parameters: k, =k3=m= 1 .O, $=2.0, c, =c,=O.O 1 , kd=0.2S, 

e. Mode * l  response curve 
b. Mode -2 response curve 

Mode *2 has been optimized. 

Figure 08: 

ke0.25, pNz0.225 (Using y=9.10 for no immediate slip) 

Figures 6b and 7b onto similar scales. 

a. Optimization of mode It 1 for system of Figure 7. Optimized with 

b. Optimization of mode *2 for system of Figure 7. (Replotting of 
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1. INTRODUCTION 

Many engineering structures are subjected to motions in which limited slip can occur 

between members. Ths is frequently the case for bolted and riveted structures and can also be 

the case for joints found in space applications. Truss structures designed for space often are 

constructed with joints that can rotate and lock into place. Ths  allows the structure to collapse 

into a compact package that is easily transported to space and then expanded. Typically, this 

type of joint mechanism is subject to limited slip behavior because of "slop" due to machining 

tolerances. In addition, joint slip is usually constrained by friction forces withm the mechanism. 

This means that the joint's motion is controlled by friction until it reaches the end of the free 

play and then it is constrained elastically. Ths type of nonlinear behavior can have a strong 

influence on system response. In particular because of the limited slip or the 'gap' aspect of the 

joint behavior scaled models of the jointed structure may not respond dynamically in the same 

manner as the full scale structure in space. This may be the case for two reasons. 

The first reason that a scaled model of a structure may not have the same dynamic 

response is that tolerances in the joints are not scaled. Typically, engineers wish to have joints 

that behave as linearly as as possible. Consequently, when they are designing the full-scale joint 

they stipulate as small as tolerances as possible to reduce slop and the associated non-linear 

behavior. When sub-scale models of the joint are developed for testing the same absolute 

tolerances are stipulated since they cannot be further reduced. As a result, the free-play in the 

sub-scale joints is, on average, significantly greater than in full-scale joints and the model 

structure will exhibit stronger non-linear behavior. 

A second reason that a scaled model of a structure may behave differently is that it may 

be tested under gravitational loading that does not occur in space. While there are laboratory 

procedures for supporting two dimensional structures ( Le. structures that have modes in which 

the motions lie in a plane) in such a way as to negate gravitational effects, they are not readily 

applicable to more complex, three dimensional structures. As a result, it is in general not 

possible to eliminate gravitationally induced preloads in the joint. The preload introduces a static 

displacement in the joint that tends to eliminate the free-play in one direction. Thus, for 
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example, the joint may behave elastically in the direction of the applied preload, and slip only 

when motion occurs in the opposing direction (in contrast to a joint without any static loads that 

slips in both directions). As a result from a dynamics point of view, a joint with preloads tends 

to be effectively stiffer and contributes less damping to the system. A goal of the current 

research is to gain a better understanding of this effect. 

T h s  research considers the dynamic response of the lumped parameter system depicted in 

Figure 1. The system may be viewed as either a model of a single degree of freedom oscillator 

or a single mode representation of a general structural system as characterized by a given modal 

mass, stiffness and damping. The non-linear element that represents the joint is indicated by the 

linkage having the spring stiffness kd. In this linkage the friction element can slide once the 

magnitude of the force builds up to pN. Slip at the friction contact point is limited by the stops 

located at distances b l  and d2 and the total gap is given by 6. The system is subjected to a 

sinusoidal excitation and a static preload, f l .  This system was chosen for examination because it 

is the simplest system which exhibits the characteristics of interest and yet, in a modal sense, has 

implications to a a broad class of systems. To date we have concentrated on understanding the 

steady state response of this system. 

The steady state response of the system is important for two reasons. The first is that it is 

easier to analyze than the transient response and, consequently, it is easier to establish important 

nondimensionalize system parameters. Since these parameters control transient response as well as 

steady state response the final issue is how much they change in going from a full-scale to a 

sub-scale system. For example, one suspects that static preloads have little effect when the 

system’s response is large since the amount of energy dissipated by friction is then independent of 

the static loads. This can be readily quantified by analyzing the system’s steady state response to 

establish for what range of dimensionless parameters this is true. T h s  analysis is easier to 

perform for steady state response because well established techniques (the describing function 

approach) exist for determining approximate solutions. The resulting analytical solutions are 

superior to numerical simulations because they are easier to compute and more general. Secondly, 

it has been shown in other work recently performed at Carnegie Mellon (see Section 2 of this 
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report) that the steady state behavior of a system can be used to estimate its transient response. 

Thus, it is clear that gaining an understanding of the factors that control the steady state response 

also has a direct bearing on how it will behave in the transient regime. 

Iwan has analyzed a similar limited slip system in [2]. It differs from that considered 

here in that it did not contain the spring with stiffness k (refer to Figure 1) nor did he consider 

static preloads. Both of these factors are important in space applications. 

2. ANALYSIS 

2.1. Formulation of Governing Equations 

The equation of motion for the system shown in Figure 1 is, 

m ~ ~ o + c ~ ~ t ~ + k x ~ t ~ = f ~ c o s l r r t + r , -  f n ( x , 3 , , 6 , )  

where f ,  is the static load, and fn is the nonlinear friction force at the joint. 

The contact pressure on the joint, N, is assumed constant, and the inertia of the friction 

element is neglected. Therefore, f n  is constant throughout the length of the friction element. 

The 

mu1 tiplied 

The 

k, is the 

distances 

distances, 

friction element will slide once the magnitude of the nonlinear force f n  equals N 

by p ,  the friction coefficient of the materials in contact. 

nonlinear force f n  is a function of the mass displacement x. When I X I  S e, where 

stiffness of the friction element, the system is linear. When I X I  2 - , and the stop 

6,. 6, are sufficiently large, the system has elasto-plastic behavior. When the stop 

6 ,  , 6, are not large enough, the system experiences a sudden hardening phenomenon. 

'd 
P 
'd 

If the mass displacement x is periodic, several different hysteresis cycles of f n  vs. 

drawn, as shown in Figures 2-6. 

x can be 

One purpose of this study is to understand the steady state response of the system shown in 

Figure 1. Although this task can be accomplished by solving equation (1) numerically for a 

sufficient long period of time: it is inefficient and computationally expensive. Therefore, an 
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alternate, more efficient method is developed. 

verify the accuracy of the analytical resu!ts in certain representative cases. 

The direct, long time solution is then used only to 

2.2. Approximate Method 

Based on the fact that the excitation is periodic; we assume that the response is also 

periodic. Therefore, the displacement X can be expanded by Fourier series. In the steady state, the 

response is approximately harmonic, i.e. 

x = A c o s 8 + B  , where f ? = o t - p  (2) 

In the above, the offset term B is included to compensate for the shf t  due to the static 

load f,. 

The method used here was adopted by several earlier papers [21 C31 1 1 3  on the studies in 

the friction damping of structures. Since the nonlinear force fn  is excited due to the oscillation of 

displacement x only; it is harmonic and can be linearized by representing it in terms of a 

truncated Fourier series as shown below. 
f n  = f ,  + fccos 8 + fscos 8 

Where 
f ,  = p N  f,( a .I, y , Q ) 

f ,=  pN f,( a. I ,  y . 9 ) 
f s =  pNfs( a. 1. y , Q )  

(3) 

(4) 

In the above, F,, F,. Fs are nondimensioned Fourier coefficients established in the Appendix 

and a, /I, 7 and q are dimensionless parameters also established in the Appendix (see equation 

(34)). 

I t  is noted that since the dynamic displacement is proportional to cos 8,  it is apparent from 

equation (3 )  that f ,  contributes to the dynamic stiffness of the system whle f s  provides damping. 

The stops shown in Figure 1 suddenly contribute to the elements stiffness and significantly 

inhibits joint damping. As can be seen in Figure 7 ,  f s  decreases with the amplitude right after 

the limit stops are ht. 

To obtain the approximate solution, equations ( 2 )  and (4) are substituted into equation (1). 
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After equating the linearly independent terms, phase shift p is eliminated by using the relation 

sin 2t + cos 2p = 1. Then the following two nonlinear algebraic equations are obtained. 

Equations ( 5 )  and ( 6 )  are solved iteratively to get the frequency response of the vibratory 

amplitude A and the permanent offset B. 

2.3. Calculation of Peak Response 

By holding the system parameters constant, the peak vibratory amplitude A is obtained as 

3 A  rn 

'Urn 

=O. at w = w ,  (7) - 

To relate equation (7)  with equations ( 5 )  and ( 6 ) .  it is observed that A and B are both 

functions of w. Consequently, g , g2 are only functions of w ,  and 
1 

= 0. 
d g ~  a g ~ a A  3B + -- + -  -- -- - 
dw a A a w  a B a w  au 

From equation ( 5 ) .  we know ag, / a w  = 0. , and from equation (7)  , we have 

(10) 
as, 

= O .  and - = k #  0. 
as, as -- 
as aw as 

I t  implies, 

aB 
- = O .  at w = w m  
aw 

(11) 

Consequently, from equation (9 ) .  we have 

Thus, the three equations that determine the peak values A and B at the corresponding 

resonant frequency of excitation are 
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(13) 

To solve equation (13). it is noted that equation ( 5 )  is decoupled from equations ( 6 )  and 

(12). And from the relation ( 6 )  + ( 1 2 ) ~  = 0, we have 

F ~ ~ + G ~ ~  m + H = o .  (14) 

where 

F = 5( mAm )' 

G = 3  ( ( 2 - 2 m k ) A 2  m -2mAmfc)  

H = (kA,)' + f z  + 2kA f + f Z  - f z  
m c  I o 

By plugging equation (12) into equation ( 6 ) .  'we have 

(15) 

Therefore, from equations (13),(14), (15) and (16). the following iterative equations for 

calculating tbe peak response can be obtained 

To solve equation (171, group values of ( Am, Bm , (om ) are first initialized to calculate 

, the Fourier coefficients f b .  f ,  f .  Iterations are then made utilizing equation (17) until ( A 

B , wm) converge. 
S C  m 

m 



7 

3. NUMERICAL RESULTS 

3.1. Frequency Response 

To examine the validity of the approximate method; equation (1) is solved directly using 

the Runge-Kutta method. The steady state response is then obtained from the "long time" transient 

solution. These 

comparisons are plotted in Figures 8-12 , in which the discrete symbols denote the transient 

solutions. These figures show that a good agreement exists between the two approaches. 

The results are compared with the ones calculated by the approximate method. 

In Figure 8, the influence of gap length 8 on the vibratory amplitude frequency response is 

shown. For 6=0., the system is linear. For B + 00, the friction joint is dominated by the friction 

damping, and system behaves plastically. In between, a transition region exists for a certain range 

of B values. where the system shifts from elastic to plastic behavior. In Uus region, the vibratory 

amplitude A may become multi-valued at some fixed excitation frequencies. Thls phenomenon is 

typically referred to as "unstable response". A typical case for 6=20. is shown in the figure. 

Unstable response can also be seen in Figure 9, In which the amplitude is calculated for 

several different values of the normal load pN. For p N  = 1.0 and 2.0, the system responses are 

stable (vibratory amplitude is single valued). For p N  = 1.5, unstable behavior is clearly seen. The 

physical explanation of this behavior is that at low pN value, the friction damping has little 

effect on the system response which is primarily dominated by the constant stiffnesses k, k, and 

the system behaves linearly. For high p N  values, the friction element is partially stuck due to the 

stronger friction resistance. Under this condition, neither of the limit stops is hit during the 

motion cycle. As a result the energy dissipation per cycle remains constant for each fixed 

excitation frequency, and the system response is stable. For normal load in the median range, as 

the case of pN = 1.5 shown in the figure, the limit stops are hit by the element during the 

motion cycle. The system response becomes meta-stable or unstable. This is due to the fact that 

the energy dissipated by friction per cycle remains constant while, because of the.limit stops, the 

element stiffness significantly increases with amplitude. This results in the multi-valued response 

indicated in Figure 9. 
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Multi-valued behavior is also seen in Figure 10; where the amplitude is calculated for 

various stiffness ratios k, / k. A region of unstable behavior is seen for k, / k = 0.25, where a 

disconnected closed curve occurs. The appearance of disconnected regions in thls more general 

system model agree well with Iwan C2l’s earlier work. 

The effect of static load f ,  on the vibratory amplitude frequency response is shown in 

Figures 11 and 12. Since the energy dissipation per cycle depends on the excitation. and damping 

only, it remains the same after the static load is applied to the system. However, the static load 

causes a permanent offset, whch is represented by the symbol B as is shown in equation ( 2 ) .  

Under h g h  excitation force f o  at resonant frequency, both limit stops shown in Figure 1 are hit 

during the motion cycle , and the offset has little effect on the vibratory amplitude. However, at 

some off-resonant frequencies, the response is sufficiently low that there is a difference in the 

response since without the static preload the limit stops would not be encountered during the 

motion cycle. However, once the static load is applied, the permanent offset thus generated adds 

to the dynamic displacement and causes the friction element to hit one of the stops and affects 

the dynamic response. 

Based on the above argument. it is then understandable that the static load may even raise 

Thus fact is depicted in the maximum amplitude of the system under low excitation force fo. 

Figure 12 where the maximum amplitude is increased when the static load f ,  = 10. 

Consequently, under certain conditions static preload can have a significant effect on 

vibratory response. For some excitation, the presence of a large static load may even eliminate 

the multi-valued response and stabilize the system. For a large structure to be used in space, 

this means that because of gravitational effects it may not be possible to duplicate on earth the 

actual response that might occur in space. Therefore, t h s  effect needs to be carefully analyzed 

in order to properly interpret laboratory test data and predict the response of the full-scale 

structure in space. 
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3.2. Peak Amplitude Response 

First consider the system’s response when there are no stops to limit slip in the nonlinear 

element. The amplitude of peak response will then depend on how stiff the nonlinear spring 

(relative to the system’s stiffness, k)  and the value of the slip load, pN. Some representative 

results are presented in Figure 12. For sufficient large pN, the friction element is stuck and the 

system is linear. This is also the case when 6 = 0. The system is also behaves linearly when pN 

is zero since no energy is dissipated by friction. I t  can be seen from the plot that the friction 

damping effect is only significant for pN between 0 and some maximum value,pNmax. 

Furthermore, a minimum peak vibratory amplitude exists for a certain- pN value, as shown in the 

figure. T h s  fact has been discovered and experimentally verified by GriffinC33. 

Figure 14 shows the plot of resonant frequency vs. normal load pN at gap length d =oo. 

It is observed that resonant frequency increases with the normal load, and hits a maximum when 

the normal load is sufficiently large that the friction element is always stuck. Again this 

indicates that the effect of normal load is only significant over a finite range. 

The effect of gap length on the peak  vibratory amplitude response is indicated by the 

results depicted in Figure 15. A plot of the resonant frequency vs. gap length is given in Figure 

16. In both figures, the 7 at the abscissa denotes the nondimension gap length defined in equation 

(34). In both plots it can be seen that for pN, a transition region exists in which the gap 

length strongly affects the dynamic response. For gaps larger than a certain value, the limit stops 

shown in Figure 1 will no longer limit slip in the friction element and, consequently, further 

increases in gap length will not affect the resonant response. It is clear that the gap length 

effect is only significant in the transition region. This is depicted in Figures 17-18, which are the 

scaled versions of the Figures 15-16. The critical gap length dCr is defined as the value beyond 

which the resonant response is unchanged. This value is determined through numerical 

experiments for different system parameters, and is used as the scale length in the abscissa for 

both plots. 

At 6=0 the system resonant response is dominated by stiffness and viscous damping. At 

d=oo, the system resonant response depends on the stiffness, and both viscous and friction 
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damping. 

and 18. 

The difference between the two responses is used to scale the results in Figures 17 

Since the resonant response is only affected by the normal load p N  = 0 to pNmax. the 

results for different normal loads all lie fairly closely together in a band as indicated in Figure 

17 for amplitude and Figure 18 for frequency. It was shown in Figure 13, that the lowest 

resonant response comes at a specific pN value (0.1 for the system consider here) and th s  case 

provides a lower bound on the response when the data is depicted as in Figure 17. The normal 

loads which are greater or less than this value then approach this common lower bound of the 

band. 

In Figure 18 the curve for pN = 5.0 stands out as unusual. Addition work is being done 

to check this result and, if it is correct, to further understand the physical basis of this behavior. 

As the normal load goes to zero or when it approaches Nmax the system becomes linear and 

the stiffness has no effect on the lower bound curve of the band. However, an increase in the 

element’s stiffness k,/k can affect the upper bound of the curves. This is shown in Figures 19 

and 20 for resonant amplitude and frequency respectively. 

4. CONCLUSION 

The approximate solution method based on a describing function approach has been verified 

to be an effective tool in studying the response of system containing a friction joint with limited 

slip. It is believed that this approach could be extended to investigate the steady state response 

of a large truss-like jointed structure and utilizing the procedures discussed in Section 2 could be 

used to calculate transient response. 

I t  has been found that under certain conditions the vibratory amplitude of the system may 

become multi-valued at certain excitation frequencies. A large jointed structure may have 

significant variations in the joint properties from joint to joint due to machining differences. As 

a result some of the joints may experience the conditions that lead to multi-value response. 

Consequently, it may be difficult to get repeatable experimental results since the structure may 



11 

settle into different patterns of response depending on fairly subtle aspects of how the loads are 

applied. The difficulty is intensified for laboratory tests of sub-scaled models of space structures 

since the scatter in the joint’s free-play is relatively larger (with respect to the smaller 

dimensions of the model joint). 

This work also shows that in some circumstances, the presence of static preloads may 

significant affect the system’s dynamic response. In this case if a large structure is ground tested 

it may be necessary to first correlate the data with an analytical model of the structure that 

includes preload effects. Then eliminate the preloads in the model and predict its behavior in 

space. 

Lastly, a way of looking at system response in terms of non-dimensionalized joint properties 

has been developed. These curves are useful because they indicate how sensitive a system is to 

changes in joint tolerances. When one makes a scale-model of a joint the relative tolerances and 

frte-play in the joint increase. The computed results indicate an approach for assessing system 

sensitivity to such changes. 
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Figuro 1: Single Degree of Freedom System with I Limit Slip Joint 
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Figure 2 Non Slip 

Figure 3 Pure Slip 
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Figuro 4 Slip with Upper Limit 

7 
Figure 6: Slip with both Limits Figure 5: Slip with Lower Limit- 
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I. APPENDIX : Calculation of Fourier Coefficient of Nonlinear Force f 

The variations of the nonlinear friction force f is considered as follows: 

The friction contact sticks initially, and f varies linearly with slope k When f n  = k pN, 

it starts to slide , and f n  remains constant until the displacement x achieves an extremum or the 

friction contact hits either one of the stops. In the latter case, f again varies linearly with 

slope k until x achieves an extremum. 

d’ 

d 

When the mass reverses direction, force f n  first decreases linearly to its original f pN 

value and sticks again. The above process is then repeated in the opposite direction. 

Given th is  behavior, the nonlinear force can therefore be expanded as a function of the 

mass displacement during a cycle of oscillation. The Fourier coefficients can then be calculated in 

terms of the amplitude of vibration. 

The displacement is assumed sinusoidal plus a D.C. offset, i.e. x = Acos 8 + B. Based on 

this, five different cases can be concluded These results are summarized in the following 

sections. 

B N  P Case 7.  No slip : 0 . 5  A+B S - .and 0. S A I - 
‘d ‘d 

For this case, an unknown slip may occur during the transient response which results in a 

permanent offset at the steady state. Ths causes an equally unknown value of a friction force as 

the f shown in Figure 2. Along with the contribution of D.C. offset 8 , coefficient f ,  is 

f ,  = kdB-?. However, f ,  is limited between these values. 

And 
fc  = kdA 

f S  = 0. 

P P N  P N  PJ Case 2. Pure slip : - 5 A+B 5 6,+-, A-B I b,+- and A 2 - 
’d ‘d ‘d ‘d 

This is the case when both the stop distances 6,, 6, are sufficiently large; hence slip is 
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not hindered. From Figure 3, the friction force can be divided into four sections during a 

displacement cycle. 

(pN - &,A) + kdAcos 0 , o . s e < e ,  

- PN 

( k ,  - p ~ )  + k ,~cos  e , n s e < e ,  
PN , e 2 s e s 2 #  

* f  = 
n 

Where 

2PN e ,  = c0s-I { 1. --I 

1. 1 2PN e,  = 2n - COS-, {-- 

kdA 

' d A  

(19) 

( 2 0 )  

It is observed that the D.C. offset B has no effect on the nonlinear force f in this case. 

Using equations 18 and 19, the nonlinear force f n  can be expanded by Fourier series as 

Where 
f, = 0. 

1 k d A  

n 
f c  = - { ( 2 p ~  - kdA )( sin e ,  - sin e,  ) + -( e ,  + e2 - R ) 

2 
k d A  

+ (-)( sin 2 8 ,  + sin 28 ,  ) I 

1 
4 

f s  = ; {( 2 p N  - &,A )( COS 8, - COS 8 ,  ) - 2k,A 

+ (&,A )( 2. - cos 28 ,  - cos 28, ) / 4. I 

( 2 2 )  

C a s e 3 . S l i p w i t b u p ~ r L i m i t : A + B r  S , + - - , A - B S  P d , + - - , a n d A > -  P N  P N  

'd 'd kd 

In this case (Figure 4). the upper stop is hit during the displacement cycle. Again, the 

nonlinear force can be separated in five sections, as shown below 

k,( B -  SI ) + k,Acos 8 , 0. s e < e ,  
- PN , e l s e < n  
( &,A - p~ ) + k , ~ ~ ~ s  e , n s e < e ,  
PN , e 2 s e < e 3  I k,( B -  6 ,  ) + k,Acos 8 , e 3 s e s 2 n  

f n  = (23) 
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Where, 

k,( 3 ,  - B )  + pN 
e,= 2n - cos- l f  1 

kdA 

The Fourier coefficients can be derived from equations 23 , 24 as 

1 

2n 
f ,  = -{ kdc B - 3,  )( 2n + e, - e,) + P N ( e ,  + e, - 28, ) 

+ k,A( sin 8, + sin 8, - sin 8, + 8, - n ) 1  

1 kdA r, = ;f &,(B - 3 , ~  sin e, - sin e,) + --( n + e, + e, - e,) 
2 

+ kdAsin 8, 

+ -( sin 28 ,  + sin 28, - sin 28, ) 
'dA 

4 
+ p ~ (  sin e, +sin e, - zsin e, ) I  

1 

6 n  
f = -{ k,( B - 3,  )( cos e, - cos e, ) + ,,N( 2c0s e, - cos , - COS e ,  ) 

'dA 
+ (--H cos 28, + 1. - cos 28, - cos 28, ) 

4 - &,A( 1. + cos 3, ) I  

(25) 

Case 4. Slip with Lower Limit : p N  5 A + B I 6, + -, P N  A - B 2 6, + - P N  

'd 'd 

In thls case, the lower stop is hit during the displacement cycle. As before, the nonlinear 

force f can be separated into four sections. 

( p N  - kdA ) + k,Acos 

kd( B + 3, ) + k,Acos 8 

, 0. 5 e I e, 
- P N  . e , ~ e s e ,  

, e, I e e, f n '  I P N  , e 3 s e s 2 n  

(26) 

Where 
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k,A - 2 p N  

k d A  

e, = COS -I{ 1 

pN + k,(B + 8 , )  
e, = 2 n  - COS -I - 

k d A  

p N - k d (  B +  3,) 
e, = 2 n  - COS -I 1 1 

kdA 

From equation 26 and 27, the Fourier coefficients are obtained. 
1 

2 n  
f ,  = -{ P ~ (  2 8 ,  - 8, - 8, + 2 n  ) + k,A( sin 8, + sin 8, - sin 8, - 8, ) 

+ k,( B + 6, N e, - e, ) I  

1 
fc = -{ pN( 2sin 8, - sin 8 ,  - sin e,? + k,( B + 8 ,  )( sin 8, - sin 8, ) 

n 

kdA - k,Asin e, + (--H e, + e, - e,) 
2 

k .A 
d 

+ (-)( sin 2 8 ,  + sin 2 8 ,  - sin 2 8 ,  ) )  
4 

P N  Case 5. S l ip  with Both Limit : A + B 2 6, + -, A - B 2 6, + e 
kd kd 

In this case, both stops are hit during the displacement cycle(Figure 6 ) .  As before, the 

nonlinear force f can be divided into five sections. 

k,( B - 6 ,  ) + kdAcos 8 , 0. I e e, 
- PN , e , s e < e ,  
kd( B + 6 ,  ) + k,Acos 8 , e,< e e3 
P N  , e,< e e, 
kd< B -  6 ,  ) + k,Acos 8 , e , s e s 2 n  

( 2 9 )  

Where 
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k,( 6 , - B ) - p N  
e, = cos - I t  1 

e2 = cos -1 t - 

e, = 2n - cos -1 t 

e, = 2n - cos -1 t 

'dA 

p N  + k,( B + 6,) 

k d A  

1 

pN - k,( B + 6,) 
1 

p N + k , (  8 , - B )  
kdA 

1 
' d A  

And the Fourier coefficients are derived from 29, 30 as 
1 

2 n  
f ,  =--I kd( B - s, )( e, + 2# - e,) + k,( B + 6 , ~  e, - e,) 

+ k,A( sin 8, + sin 8, - sin 8, - sin 8, ) 

+ p ~ (  e, + e,- e, - e,)) 

1 ' d A  

n 
f c = - t  k , (B-  6 ,  ) ( s i n e ,  -sin 8,) + (-)( 8, + 8,+2n - 8,- 8,) 

2 
' d A  

+ (-)( sin 28, + sin 28, - sin 28, - sin 28 ,  ) 

+ kd< B + 6, sin 8, - sin 8,) 
+ pN( sin 8, - sin 8, + sin 8,- sin e, ) I  

4 

1 fs=-pd(~- 6 ,  ~ ~ c o ~ e , - c o s e , ~ + k , ~ ~ +  ~ 2 ~ ~ c o ~ e 2 - c o ~ e 3 ~  (31) 

+ p ~ (  cos e, + cos e, - cos e, - cos e,) 

+ (--M cos 28, + cos 28, - cos 2e,cos 28, ) I  
' d A  

4 

From the above obtained results, the nonlinear force f can be written as 

+ f s < A , , B , p N , k , .  J , ,  6,) 
f n =  f,( A ,  B ,  p N ,  k , ,  6, , 6,) + f$ A B ,  p N ,  k d ,  6,. 6,)cos B 

The three coefficients can be nondimensionlized as follows : 

f ,  = pN f,( a, 1, y. q)  
f c = p N f c (  0.1, y , q )  
f S  = pN f s (  a, 1. y. q)  

(32) 

(33 )  

where, 
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' d A  a=- 
PN 
B 

B=, 
kd ' 

Y =- 

q = -  

where, 

t*N 
5 

5 = 8 ,  + 6, 
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